首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   7篇
  国内免费   5篇
安全科学   10篇
废物处理   13篇
环保管理   57篇
综合类   40篇
基础理论   65篇
环境理论   1篇
污染及防治   45篇
评价与监测   15篇
社会与环境   7篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   18篇
  2012年   11篇
  2011年   20篇
  2010年   7篇
  2009年   6篇
  2008年   15篇
  2007年   10篇
  2006年   16篇
  2005年   2篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有253条查询结果,搜索用时 0 毫秒
91.
Scale-up microsphere fabrication with controllable microsphere size has always been an exciting manufacturing challenge. The objective of this study is to experimentally study the effects of material properties and operating conditions on the formability of alginate microspheres and the microsphere size during drop-on-demand (DOD)-based single nozzle jetting. Alginate microspheres have been fabricated using bipolar wave-based drop-on-demand jetting, and its formability and size have been studied especially as a function of sodium alginate and calcium chloride concentrations, voltage rise/fall times, dwell and echo times, excitation voltage amplitudes, and frequency. It is found that 1) the formability is sensitive to the sodium alginate and calcium chloride concentrations, dwell and echo voltages, and voltage dwell time; and the formability decreases with the sodium alginate concentration but increases with the calcium chloride concentration, dwell and echo voltages, and voltage dwell time; 2) the size is not sensitive to the sodium alginate and calcium chloride concentrations but increases first with the dwell time and then decreases; and 3) the size increases with the dwell and absolute echo voltage amplitudes.  相似文献   
92.
Soils are a key component of the terrestrial carbon cycle as they contain the majority of terrestrial carbon. Soil microorganisms mainly control the accumulation and loss of this carbon. However, traditional concepts of soil carbon stabilisation failed so far to account for environmental and energetic constraints of microorganisms. Here, we demonstrate for the first time that these biological limitations might have the overall control on soil carbon stability. In a long-term experiment, we incubated 13C-labelled compost with natural soils at various soil carbon concentrations. Unexpectedly, we found that soil carbon turnover decreased with lower carbon concentration. We developed a conceptual model that explained these observations. In this model, two types of particles were submitted to random walk movement in the soil profile: soil organic matter substrate and microbial decomposers. Soil carbon turnover depended only on the likelihood of a decomposer particle to meet a substrate particle; in consequence, carbon turnover decreased with lower carbon concentration, like observed in the experiment. This conceptual model was able to simulate realistic depth profiles of soil carbon and soil carbon age. Our results, which are simply based on the application of a two-step kinetic, unmystify the stability of soil carbon and suggest that observations like high carbon ages in subsoil, stability of carbon in fallows and priming of soil carbon might be simply explained by the probability to be decomposed.  相似文献   
93.
94.
The nettle caterpillar, Darna pallivitta (Moore) (Lepidoptera: Limacodidae), is an invasive pest with established populations on three Hawai’ian islands. Indigenous to Southeast Asia, D. pallivitta caterpillars cause defoliation of ornamental nursery stock and pose a human health hazard due to their urticating hairs that can cause painful skin reactions. Identification of the pheromone component n-butyl (E)-7,9-decadienoate (E7,9-10:COOnBu) from D. pallivitta has made it possible to investigate the phenology and population dynamics using baited traps. Male captures in Jackson traps baited with E7,9-10:COOnBu showed a vegetation preference for tall-grass fields and forest/grass interfaces over forest areas. Microlocation preferences were also found for trap height, with over 65% of males being caught in traps suspended at 1 m, compared with the traps at 3 and 5 m. Captures of male moths in traps baited with live females, and direct observations of female calling behavior, showed peak activities 6–7 h after the onset of scotophase. This is a much later communication period than for D. bradleyi and D. trima and may provide a mechanism by which D. pallivitta maintains reproductive isolation in areas where all three species are present. Coastal and inland transects established in eastern Hawai’i measured aspects of population fluctuations and radiation into new areas with relation to elevation and microclimate. Population expansion was measured by comparing moth population means and 80% population boundaries over time. Both population measures showed a higher expansion for the coastal transect. Differences in population expansion may be attributed in part to temperature and elevation, while precipitation does not seem to have a strong effect. Both the behavioral and ecological data collected can be used to optimize deployment of detection/control strategies and to predict population expansion/risk assessment for establishing quarantine protocols for the nettle caterpillar.  相似文献   
95.
Despite its successes, the U.S. Endangered Species Act (ESA) has proven challenging to implement due to funding limitations, workload backlog, and other problems. As threats to species survival intensify and as more species come under threat, the need for the ESA and similar conservation laws and policies in other countries to function efficiently has grown. Attempts by the U.S. Fish and Wildlife Service (USFWS) to streamline ESA decisions include multispecies recovery plans and habitat conservation plans. We address species status assessment (SSA), a USFWS process to inform ESA decisions from listing to recovery, within the context of multispecies and ecosystem planning. Although existing SSAs have a single-species focus, ecosystem-based research can efficiently inform multiple SSAs within a region and provide a foundation for transition to multispecies SSAs in the future. We considered at-risk grassland species and ecosystems within the southeastern United States, where a disproportionate number of rare and endemic species are associated with grasslands. To initiate our ecosystem-based approach, we used a combined literature-based and structured World Café workshop format to identify science needs for SSAs. Discussions concentrated on 5 categories of threats to grassland species and ecosystems, consistent with recommendations to make shared threats a focus of planning under the ESA: (1) habitat loss, fragmentation, and disruption of functional connectivity; (2) climate change; (3) altered disturbance regimes; (4) invasive species; and (5) localized impacts. For each threat, workshop participants identified science and information needs, including database availability, research priorities, and modeling and mapping needs. Grouping species by habitat and shared threats can make the SSA process and other planning processes for conservation of at-risk species worldwide more efficient and useful. We found a combination of literature review and structured discussion effective for identifying the scientific information and analysis needed to support the development of multiple SSAs. Article impact statement: Species status assessments can be improved by an ecosystem-based approach that groups imperiled species by shared habitats and threats.  相似文献   
96.
汉江富营养化动态模型研究   总被引:15,自引:0,他引:15  
针对汉江富营养化问题,建立水体富营养化动态模型,其特点是不仅能够较好地模拟浮游植物的变化过程,而且能够提供发生水华的原因和生态机理的解释。最后汉江武汉段1998年发生的水华事件为实例进行模拟,结果表明模型合理可信。  相似文献   
97.
ABSTRACT: A geographic information system (GRASS 3.1) was used to correlate the availability of nitrogen fertilizer with the susceptibility of ground water to pollution in Texas to identify potential ground water quality problems. An agricultural pollution susceptibility map, produced by the Texas Water Commission using the DRASTIC methodology, was combined with information on cropped areas, recommended nitrogen fertilizer application rates, and aquifer outcrops. A Nitrogen Fertilizer Pollution Potential Index was generated, identifying 24 percent of Texas within the high pollution potential category An analysis of the susceptibility of major aquifer outcrops to potential pollution from nitrogen fertilizer indicated that 34 percent of the outcrop areas fall in the high pollution potential range. It is proposed that correlating the availability of a pollutant with an assessment of the susceptibility of ground water to pollution yields a more accurate screening tool for identifying potential pollution problems than considering susceptibility alone.  相似文献   
98.
Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.  相似文献   
99.
100.
Nitrate has become an increased regulatory concern due to gradual deterioration of surface and groundwater quality primarily related to widespread fertilizer use. Remediation of nitrate is a relatively straightforward process; however, nitrate impacts to groundwater are often a symptom of a sustained source from another nitrogen form (e.g., ammonia, ammonium nitrate, urea), analogous to how nonaqueous phase liquid can serve as a long‐term source of volatile organic compounds in groundwater. Understanding the various nitrogen transformation reactions when selecting, implementing, or documenting a remedy associated with nitrate is therefore critical to successfully reaching remedial endpoints. Case studies are presented that highlight in situ remedial successes with nitrogen‐impacted groundwater and discuss the key considerations that should be factored into remedy application. ©2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号